skip to main content


Search for: All records

Creators/Authors contains: "Chacko, Zackaria"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A bstract We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H 0 and S 8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S 8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H 0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  2. We propose a new interacting dark sector model, Stepped Partially Acoustic Dark Matter (SPartAcous), that can simultaneously address the two most important tensions in current cosmological data, the H0 and S8 problems. As in the Partially Acoustic Dark Matter (PAcDM) scenario, this model features a subcomponent of dark matter that interacts with dark radiation at high temperatures, suppressing the growth of structure at small scales and thereby addressing the S8 problem. However, in the SPartAcous model, the dark radiation includes a component with a light mass that becomes non-relativistic close to the time of matter-radiation equality. As this light component annihilates away, the remaining dark radiation heats up and its interactions with dark matter decouple. The heating up of the dark sector results in a step-like increase in the relative energy density in dark radiation, significantly reducing the H0 tension, while the decoupling of dark matter and dark radiation ensures that the power spectrum at larger scales is identical to ΛCDM. 
    more » « less
    Free, publicly-accessible full text available June 1, 2024
  3. A bstract We present cosmological constraints on the sum of neutrino masses as a function of the neutrino lifetime, in a framework in which neutrinos decay into dark radiation after becoming non-relativistic. We find that in this regime the cosmic microwave background (CMB), baryonic acoustic oscillations (BAO) and (uncalibrated) luminosity distance to supernovae from the Pantheon catalog constrain the sum of neutrino masses ∑ m ν to obey ∑ m ν < 0 . 42 eV at (95% C.L.). While the bound has improved significantly as compared to the limits on the same scenario from Planck 2015, it still represents a significant relaxation of the constraints as compared to the stable neutrino case. We show that most of the improvement can be traced to the more precise measurements of low- ℓ polarization data in Planck 2018, which leads to tighter constraints on τ reio (and thereby on A s ), breaking the degeneracy arising from the effect of (large) neutrino masses on the amplitude of the CMB power spectrum. 
    more » « less
  4. A bstract We explore the possibility of discovering the mirror baryons and electrons of the Mirror Twin Higgs model in direct detection experiments, in a scenario in which these particles constitute a subcomponent of the observed DM. We consider a framework in which the mirror fermions are sub-nano-charged, as a consequence of kinetic mixing between the photon and its mirror counterpart. We consider both nuclear recoil and electron recoil experiments. The event rates depend on the fraction of mirror DM that is ionized, and also on its distribution in the galaxy. Since mirror DM is dissipative, at the location of the Earth it may be in the form of a halo or may have collapsed into a disk, depending on the cooling rate. For a given mirror DM abundance we determine the expected event rates in direct detection experiments for the limiting cases of an ionized halo, an ionized disk, an atomic halo and an atomic disk. We find that by taking advantage of the complementarity of the different experiments, it may be possible to establish not just the multi-component nature of mirror dark matter, but also its distribution in the galaxy. In addition, a study of the recoil energies may be able to determine the masses and charges of the constituents of the mirror sector. By showing that the mass and charge of mirror helium are integer multiples of those of mirror hydrogen, these experiments have the potential to distinguish the mirror nature of the theory. We also carefully consider mirror plasma screening effects, showing that the capture of mirror dark matter particles in the Earth has at most a modest effect on direct detection signals. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)
    A bstract We consider a class of models in which the neutrinos acquire Majorana masses through mixing with singlet neutrinos that emerge as composite states of a strongly coupled hidden sector. In this framework, the light neutrinos are partially composite particles that obtain their masses through the inverse seesaw mechanism. We focus on the scenario in which the strong dynamics is approximately conformal in the ultraviolet, and the compositeness scale lies at or below the weak scale. The small parameters in the Lagrangian necessary to realize the observed neutrino masses can naturally arise as a consequence of the scaling dimensions of operators in the conformal field theory. We show that this class of models has interesting implications for a wide variety of experiments, including colliders and beam dumps, searches for lepton flavor violation and neutrinoless double beta decay, and cosmological observations. At colliders and beam dumps, this scenario can give rise to striking signals involving multiple displaced vertices. The exchange of hidden sector states can lead to observable rates for flavor violating processes such as μ → eγ and μ → e conversion. If the compositeness scale lies at or below a hundred MeV, the rate for neutrinoless double beta decay is suppressed by form factors and may be reduced by an order of magnitude or more. The late decays of relic singlet neutrinos can give rise to spectral distortions in the cosmic microwave background that are large enough to be observed in future experiments. 
    more » « less
  7. null (Ed.)